Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.022
Filtrar
1.
Clin Chem Lab Med ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38564810

RESUMO

OBJECTIVES: To study intrathecal kappa free light chain (KFLC) synthesis in people living with HIV (PLWH) in comparison with multiple sclerosis (MS). METHODS: Cross-sectional analysis including 56 untreated and 150 well treated PLWH, and compared with 58 controls, and 223 MS patients. RESULTS: Elevated serum/cerebrospinal fluid (CSF) IgG and KFLC indices were observed in untreated PLWH. Seventy percent of untreated PLWH had KFLC index above 6.1, a threshold associated with clinically isolated syndrome/MS diagnosis. No association was found between KFCL index and CSF markers of neuronal injury in either PLWH or MS patients. CONCLUSIONS: HIV-related immune system dysfunction is often associated with an elevated KFLC index akin to those observed in MS. HIV infection should be considered as a differential diagnosis for patients presenting with neurological symptoms and increased intrathecal immunoglobulin synthesis.

2.
Neurol Sci ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558318

RESUMO

INTRODUCTION: Alexander disease (AxD) is a rare leukodystrophy caused by dominant gain-of-function mutations in the gene encoding the astrocyte intermediate filament, glial fibrillary acidic protein (GFAP). However, there is an urgent need for biomarkers to assist in monitoring not only the progression of disease but also the response to treatment. GFAP is the obvious candidate for such a biomarker, as it is measurable in body fluids that are readily accessible for biopsy, namely cerebrospinal fluid and blood. However, in the case of ASOs, the treatment that is furthest in development, GFAP is the target of therapy and presumably would go down independent of disease status. Hence, there is a critical need for biomarkers that are not directly affected by the treatment strategy. METHODS: We explored the potential utility of biomarkers currently being studied in other neurodegenerative diseases and injuries, specifically neurofilament light protein (NfL), phosphorylated forms of tau, and amyloid-ß peptides (Aß42/40). RESULTS AND CONCLUSIONS: Here, we report that GFAP is elevated in plasma of all age groups afflicted by AxD, including those with adult onset. NfL and p-tau are also elevated, but to a much lesser extent than GFAP. In contrast, the levels of Aß40 and Aß42 are not altered in AxD.

3.
Res Sq ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559231

RESUMO

Background: An elevated neutrophil-lymphocyte ratio (NLR) in blood has been associated with Alzheimer's disease (AD). However, an elevated NLR has also been implicated in many other conditions that are risk factors for AD, prompting investigation into whether the NLR is directly linked with AD pathology or a result of underlying comorbidities. Herein, we explored the relationship between the NLR and AD biomarkers in the cerebrospinal fluid (CSF) of cognitively unimpaired (CU) subjects. Adjusting for sociodemographics, APOE4, and common comorbidities, we investigated these associations in two cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the M.J. de Leon CSF repository at NYU. Specifically, we examined associations between the NLR and cross-sectional measures of amyloid-ß42 (Aß42), total tau (t-tau), and phosphorylated tau181 (p-tau), as well as the trajectories of these CSF measures obtained longitudinally. Results: A total of 111 ADNI and 190 NYU participants classified as CU with available NLR, CSF, and covariate data were included. Compared to NYU, ADNI participants were older (73.79 vs. 61.53, p < 0.001), had a higher proportion of males (49.5% vs. 36.8%, p = 0.042), higher BMIs (27.94 vs. 25.79, p < 0.001), higher prevalence of hypertensive history (47.7% vs. 16.3%, p < 0.001), and a greater percentage of Aß-positivity (34.2% vs. 20.0%, p = 0.009). In the ADNI cohort, we found cross-sectional associations between the NLR and CSF Aß42 (ß=-12.193, p = 0.021), but not t-tau or p-tau. In the NYU cohort, we found cross-sectional associations between the NLR and CSF t-tau (ß = 26.812, p = 0.019) and p-tau (ß = 3.441, p = 0.015), but not Aß42. In the NYU cohort alone, subjects classified as Aß+ (n = 38) displayed a stronger association between the NLR and t-tau (ß = 100.476, p = 0.037) compared to Aß- subjects or the non-stratified cohort. In both cohorts, the same associations observed in the cross-sectional analyses were observed after incorporating longitudinal CSF data. Conclusions: We report associations between the NLR and Aß42 in the older ADNI cohort, and between the NLR and t-tau and p-tau181 in the younger NYU cohort. Associations persisted after adjusting for comorbidities, suggesting a direct link between the NLR and AD. However, changes in associations between the NLR and specific AD biomarkers may occur as part of immunosenescence.

4.
J Neurol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589629

RESUMO

Multimodal biomarkers may identify former contact sports athletes with repeated concussions and at risk for dementia. Our study aims to investigate whether biomarker evidence of neurodegeneration in former professional athletes with repetitive concussions (ExPro) is associated with worse cognition and mood/behavior, brain atrophy, and altered functional connectivity. Forty-one contact sports athletes with repeated concussions were divided into neurodegenerative biomarker-positive (n = 16) and biomarker-negative (n = 25) groups based on positivity of serum neurofilament light-chain. Six healthy controls (negative for biomarkers) with no history of concussions were also analyzed. We calculated cognitive and mood/behavior composite scores from neuropsychological assessments. Gray matter volume maps and functional connectivity of the default mode, salience, and frontoparietal networks were compared between groups using ANCOVAs, controlling for age, and total intracranial volume. The association between the connectivity networks and sports characteristics was analyzed by multiple regression analysis in all ExPro. Participants presented normal-range mean performance in executive function, memory, and mood/behavior tests. The ExPro groups did not differ in professional years played, age at first participation in contact sports, and number of concussions. There were no differences in gray matter volume between groups. The neurodegenerative biomarker-positive group had lower connectivity in the default mode network (DMN) compared to the healthy controls and the neurodegenerative biomarker-negative group. DMN disconnection was associated with increased number of concussions in all ExPro. Biomarkers of neurodegeneration may be useful to detect athletes that are still cognitively normal, but with functional connectivity alterations after concussions and at risk of dementia.

5.
Crit Care ; 28(1): 116, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594704

RESUMO

BACKGROUND: The purpose was to evaluate glial fibrillary acidic protein (GFAP) and total-tau in plasma as predictors of poor neurological outcome after out-of-hospital (OHCA) and in-hospital cardiac arrest (IHCA), including comparisons with neurofilament light (NFL) and neuron-specific enolase (NSE). METHODS: Retrospective multicentre observational study of patients admitted to an intensive care unit (ICU) in three hospitals in Sweden 2014-2018. Blood samples were collected at ICU admission, 12 h, and 48 h post-cardiac arrest. Poor neurological outcome was defined as Cerebral Performance Category 3-5 at 2-6 months after cardiac arrest. Plasma samples were retrospectively analysed for GFAP, tau, and NFL. Serum NSE was analysed in clinical care. Prognostic performances were tested with the area under the receiver operating characteristics curve (AUC). RESULTS: Of the 428 included patients, 328 were OHCA, and 100 were IHCA. At ICU admission, 12 h and 48 h post-cardiac arrest, GFAP predicted neurological outcome after OHCA with AUC (95% CI) 0.76 (0.70-0.82), 0.86 (0.81-0.90) and 0.91 (0.87-0.96), and after IHCA with AUC (95% CI) 0.77 (0.66-0.87), 0.83 (0.74-0.92) and 0.83 (0.71-0.95). At the same time points, tau predicted outcome after OHCA with AUC (95% CI) 0.72 (0.66-0.79), 0.75 (0.69-0.81), and 0.93 (0.89-0.96) and after IHCA with AUC (95% CI) 0.61 (0.49-0.74), 0.68 (0.56-0.79), and 0.77 (0.65-0.90). Adding the change in biomarker levels between time points did not improve predictive accuracy compared to the last time point. In a subset of patients, GFAP at 12 h and 48 h, as well as tau at 48 h, offered similar predictive value as NSE at 48 h (the earliest time point NSE is recommended in guidelines) after both OHCA and IHCA. The predictive performance of NFL was similar or superior to GFAP and tau at all time points after OHCA and IHCA. CONCLUSION: GFAP and tau are promising biomarkers for neuroprognostication, with the highest predictive performance at 48 h after OHCA, but not superior to NFL. The predictive ability of GFAP may be sufficiently high for clinical use at 12 h after cardiac arrest.


Assuntos
Parada Cardíaca Extra-Hospitalar , Humanos , Proteína Glial Fibrilar Ácida , Estudos Retrospectivos , Filamentos Intermediários , Prognóstico , Biomarcadores
6.
J Neurol Sci ; 459: 122979, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569376

RESUMO

INTRODUCTION: Huntington's disease (HD) is a hereditary neurodegenerative disease, currently lacking disease-modifying treatments. Biomarkers are needed for objective assessment of disease progression. Evidence supports both complex protein aggregation and astrocyte activation in HD. This study assesses the 42 amino acid long amyloid beta (Aß42) and glial fibrillary acidic protein (GFAP) as potential biomarkers in the cerebrospinal fluid (CSF) of HD mutation carriers. METHODS: CSF from participants was obtained from three sites in Sweden. Clinical symptoms were graded with the composite Unified Huntington's disease rating scale (cUHDRS). Protein concentrations were measured using ELISA. Pearson correlations were calculated to assess disease progression association. Results were adjusted for age and collection site. RESULTS: The study enrolled 28 manifest HD patients (ManHD), 13 premanifest HD gene-expansion carriers (PreHD) and 20 controls. Aß42 levels did not differ between groups and there was no correlation with measures of disease progression. GFAP concentration was higher in ManHD (424 ng/l, SD 253) compared with both PreHD (266 ng/l, SD 92.4) and controls (208 ng/l, SD 83.7). GFAP correlated with both cUHDRS (r = -0.77, p < 0.001), and 5-year risk of disease onset (r = 0.70, p = 0.008). CONCLUSION: We provide evidence that indicates CSF Aß42 has limited potential as a biomarker for HD. GFAP is a potential biomarker of progression in HD. Validation in larger cohorts measuring GFAP in blood and CSF would be of interest.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Doença de Huntington/genética , Peptídeos beta-Amiloides , Proteína Glial Fibrilar Ácida , Doenças Neurodegenerativas/complicações , Progressão da Doença , Biomarcadores
7.
Nat Commun ; 15(1): 2908, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575616

RESUMO

Staging amyloid-beta (Aß) pathophysiology according to the intensity of neurodegeneration could identify individuals at risk for cognitive decline in Alzheimer's disease (AD). In blood, phosphorylated tau (p-tau) associates with Aß pathophysiology but an AD-type neurodegeneration biomarker has been lacking. In this multicenter study (n = 1076), we show that brain-derived tau (BD-tau) in blood increases according to concomitant Aß ("A") and neurodegeneration ("N") abnormalities (determined using cerebrospinal fluid biomarkers); We used blood-based A/N biomarkers to profile the participants in this study; individuals with blood-based p-tau+/BD-tau+ profiles had the fastest cognitive decline and atrophy rates, irrespective of the baseline cognitive status. Furthermore, BD-tau showed no or much weaker correlations with age, renal function, other comorbidities/risk factors and self-identified race/ethnicity, compared with other blood biomarkers. Here we show that blood-based BD-tau is a biomarker for identifying Aß-positive individuals at risk of short-term cognitive decline and atrophy, with implications for clinical trials and implementation of anti-Aß therapies.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Proteínas tau/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Biomarcadores/líquido cefalorraquidiano , Atrofia
8.
Alzheimers Dement (Amst) ; 16(2): e12576, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605996

RESUMO

INTRODUCTION: While elevated blood glial fibrillary acidic protein (GFAP) has been associated with brain amyloid pathology, whether this association occurs in populations with high cerebral small vessel disease (CSVD) concomitance remains unclear. METHODS: Using a Singapore-based cohort of cognitively impaired subjects, we assessed associations between plasma GFAP and neuroimaging measures of brain amyloid and CSVD, including white matter hyperintensities (WMH). We also examined the diagnostic performance of plasma GFAP in detecting brain amyloid beta positivity (Aß+). RESULTS: When stratified by WMH status, elevated brain amyloid was associated with higher plasma GFAP only in the WMH- group (ß = 0.383; P < 0.001). The diagnostic performance of plasma GFAP in identifying Aß+ was significantly higher in the WMH- group (area under the curve [AUC] = 0.896) than in the WMH+ group (AUC = 0.712, P = 0.008). DISCUSSION: The biomarker utility of plasma GFAP in detecting brain amyloid pathology is dependent on the severity of concomitant WMH. Highlight: Glial fibrillary acidic protein (GFAP)'s association with brain amyloid is unclear in populations with high cerebral small vessel disease (CSVD).Plasma GFAP was measured in a cohort with CSVD and brain amyloid.Plasma GFAP was better in detecting amyloid in patients with low CSVD versus high CSVD.Biomarker utility of GFAP in detecting brain amyloid depends on the severity of CSVD.

9.
Alzheimers Dement (Amst) ; 16(2): e12590, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623387

RESUMO

INTRODUCTION: A major limitation in Alzheimer's disease (AD) research is the lack of the ability to measure cognitive performance at scale-robustly, remotely, and frequently. Currently, there are no established online digital platforms validated against plasma biomarkers of AD. METHODS: We used a novel web-based platform that assessed different cognitive functions in AD patients (N = 46) and elderly controls (N = 53) who were also evaluated for plasma biomarkers (amyloid beta 42/40 ratio, phosphorylated tau ([p-tau]181, glial fibrillary acidic protein, neurofilament light chain). Their cognitive performance was compared to a second, larger group of elderly controls (N = 352). RESULTS: Patients with AD were significantly impaired across all digital cognitive tests, with performance correlating with plasma biomarker levels, particularly p-tau181. The combination of p-tau181 and the single best-performing digital test achieved high accuracy in group classification. DISCUSSION: These findings show how online testing can now be deployed in patients with AD to measure cognitive function effectively and related to blood biomarkers of the disease. Highlights: This is the first study comparing online digital testing to plasma biomarkers.Alzheimer's disease patients and two independent cohorts of elderly controls were assessed.Cognitive performance correlated with plasma biomarkers, particularly phosphorylated tau (p-tau)181.Glial fibrillary acidic protein and neurofilament light chain, and less so the amyloid beta 42/40 ratio, were also associated with performance.The best cognitive metric performed at par to p-tau181 in group classification.

10.
Res Sq ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562890

RESUMO

BACKGROUND: Neuropsychiatric symptoms (NPS) are common in older people, may occur early in the development of dementia disorders, and have been associated with faster cognitive decline. Here, our objectives were to investigate whether plasma levels of neurofilament light chain (NfL), glial fibrillary acid protein (GFAP), and tau phosphorylated at threonine 181 (pTau181) are associated with current NPS and predict future NPS in non-demented older people. Furthermore, we tested whether the presence of NPS combined with plasma biomarkers are useful to predict Alzheimer's disease (AD) pathology and cognitive decline. METHODS: One hundred and fifty-one participants with normal cognition (n=76) or mild cognitive impairment (n=75) were examined in a longitudinal brain aging study at the Memory Centers, University Hospital of Lausanne, Switzerland. Plasma levels of NfL, GFAP, and pTau181 along with CSF biomarkers of AD pathology were measured at baseline. NPS were assessed through the Neuropsychiatric Inventory Questionnaire (NPI-Q), along with the cognitive and functional performance at baseline and follow-up (mean: 20 months). Linear regression and ROC analyses were used to address the associations of interest. RESULTS: Higher GFAP levels were associated with NPS at baseline (ß=0.23, p=.008). Higher NfL and GFAP levels were associated with the presence of NPS at follow-up (ß=0.29, p=.007 and ß=0.28, p=.007, respectively) and with an increase in the NPI-Q severity score over time (ß=0.23, p=.035 and ß=0.27, p=.011, respectively). Adding NPS and the plasma biomarkers to a reference model improved the prediction of future NPS (AUC 0.73 to 0.84, p=.007) and AD pathology (AUC 0.79 to 0.86, p=.006), but not of cognitive decline (AUC 0.79 to 0.84, p=.068). CONCLUSION: Plasma GFAP is associated with NPS while NfL and GFAP are both associated with future NPS and NPS severity. Considering the presence of NPS along with blood-based AD-biomarkers may improve diagnosis and prediction of clinical progression of NPS and inform clinical decision-making in non-demented older people.

11.
J Neuroimmunol ; 390: 578342, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38640827

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline that severely affects patients and their families. Genetic and environmental risk factors, such as viral infections, synergize to accelerate the aging-associated neurodegeneration. Genetic risk factors for late-onset AD (LOAD), which accounts for most AD cases, are predominantly implicated in microglial and immune cell functions. As such, microglia play a major role in formation of amyloid beta (Aß) plaques, the major pathological hallmark of AD. This review aims to provide an overview of the current knowledge regarding the role of microglia in Aß plaque formation, as well as their impact on morphological and functional diversity of Aß plaques. Based on this discussion, we seek to identify challenges and opportunities in this field with potential therapeutic implications.

12.
Neurology ; 102(9): e209402, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38593394

RESUMO

OBJECTIVES: To determine the prevalence of individuals with Alzheimer disease (AD) eligible for treatment with the recently FDA-approved lecanemab based on data from a population-based sample of 70-year-olds and extrapolate an estimation of individuals eligible in Europe and the United States. METHODS: Participants from the Gothenburg H70 Birth Cohort Study with clinical data, CSF-amyloid beta 42, and brain MRI analysis were evaluated for eligibility to receive lecanemab treatment according to FDA-approved recommendations, noting factors requiring special consideration. Results were used to extrapolate the number of eligible individuals in Europe and the United States using public demographic data. RESULTS: Thirty (10.3%) of 290 participants met the indication for treatment of whom 18 (6.2%) were eligible and did not present factors requiring special consideration. Our estimate that 6.2% of all 70-year-olds in the full cohort are eligible for treatment extrapolates to an approximation that around 5.9 million Europeans and 2.2 million US residents could be eligible. DISCUSSION: Information on proportion of individuals eligible for AD treatment with lecanemab in the general public is limited. We provide information on 70-year-olds in Sweden and extrapolate these data to Europe and the United States. This study opens for larger studies on this proportion and implementation of lecanemab treatment.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Anticorpos Monoclonais Humanizados , Humanos , Estados Unidos , Estudos de Coortes , Vida Independente , Doença de Alzheimer/epidemiologia
14.
Nat Rev Neurol ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609644

RESUMO

Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.

15.
Mol Psychiatry ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503931

RESUMO

The recent introduction of new-generation immunoassay methods allows the reliable quantification of structural brain markers in peripheral matrices. Neurofilament light chain (NfL), a neuron-specific cytoskeletal component released in extracellular matrices after neuroaxonal impairment, is considered a promising blood marker of active brain pathology. Given its sensitivity to a wide range of neuropathological alterations, NfL has been suggested for the use in clinical practice as a highly sensitive, but unspecific tool to quantify active brain pathology. While large efforts have been put in characterizing its clinical profile in many neurological conditions, NfL has received far less attention as a potential biomarker in major psychiatric disorders. Therefore, we briefly introduce NfL as a marker of neuroaxonal injury, systematically review recent findings on cerebrospinal fluid and blood NfL levels in patients with primary psychiatric conditions and highlight the opportunities and pitfalls. Current evidence suggests an elevation of blood NfL levels in patients with major depression, bipolar disorder, psychotic disorders, anorexia nervosa, and substance use disorders compared to physiological states. However, blood NfL levels strongly vary across diagnostic entities, clinical stage, and patient subgroups, and are influenced by several demographic, clinical, and analytical factors, which require accurate characterization. Potential clinical applications of NfL measure in psychiatry are seen in diagnostic and prognostic algorithms, to exclude neurodegenerative disease, in the assessment of brain toxicity for different pharmacological compounds, and in the longitudinal monitoring of treatment response. The high inter-individual variability of NfL levels and the lack of neurobiological understanding of its release are some of the main current limitations. Overall, this primer aims to introduce researchers and clinicians to NfL measure in the psychiatric field and to provide a conceptual framework for future research directions.

16.
J Mass Spectrom ; 59(3): e5008, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445816

RESUMO

Given the complexity of nervous tissues, understanding neurochemical pathophysiology puts high demands on bioanalytical techniques with respect to specificity and sensitivity. Mass spectrometry imaging (MSI) has evolved to become an important, biochemical imaging technology for spatial biology in biological and translational research. The technique facilitates comprehensive, sensitive elucidation of the spatial distribution patterns of drugs, lipids, peptides, and small proteins in situ. Matrix-assisted laser desorption ionization (MALDI)-based MSI is the dominating modality due to its broad applicability and fair compromise of selectivity, sensitivity price, throughput, and ease of use. This is particularly relevant for the analysis of spatial lipid patterns, where no other comparable spatial profiling tools are available. Understanding spatial lipid biology in nervous tissue is therefore a key and emerging application area of MSI research. The aim of this review is to give a concise guide through the MSI workflow for lipid imaging in central nervous system (CNS) tissues and essential parameters to consider while developing and optimizing MSI assays. Further, this review provides a broad overview of key developments and applications of MALDI MSI-based spatial neurolipidomics to map lipid dynamics in neuronal structures, ultimately contributing to a better understanding of neurodegenerative disease pathology.


Assuntos
Doenças Neurodegenerativas , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Doenças Neurodegenerativas/diagnóstico por imagem , Fluxo de Trabalho , Encéfalo/diagnóstico por imagem , Lipídeos
17.
Med ; 5(4): 321-334.e3, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38513660

RESUMO

BACKGROUND: Neurosyphilis is increasing in prevalence but its pathophysiology remains incompletely understood. This study assessed for CNS-specific immune responses during neurosyphilis compared to syphilis without neurosyphilis and compared these immune profiles to those observed in other neuroinflammatory diseases. METHODS: Participants with syphilis were categorized as having neurosyphilis if their cerebrospinal fluid (CSF)-venereal disease research laboratory (VDRL) test was reactive and as having syphilis without neurosyphilis if they had a non-reactive CSF-VDRL test and a white blood cell count <5/µL. Neurosyphilis and syphilis without neurosyphilis participants were matched by rapid plasma reagin titer and HIV status. CSF and plasma were assayed for markers of neuronal injury and glial and immune cell activation. Bulk RNA sequencing was performed on CSF cells, with results stratified by the presence of neurological symptoms. FINDINGS: CSF neopterin and five CSF chemokines had levels significantly higher in individuals with neurosyphilis compared to those with syphilis without neurosyphilis, but no markers of neuronal injury or astrocyte activation were significantly elevated. The CSF transcriptome in neurosyphilis was characterized by genes involved in microglial activation and lipid metabolism and did not differ in asymptomatic versus symptomatic neurosyphilis cases. CONCLUSIONS: The CNS immune response observed in neurosyphilis was comparable to other neuroinflammatory diseases and was present in individuals with neurosyphilis regardless of neurological symptoms, yet there was minimal evidence for neuronal or astrocyte injury. These findings support the need for larger studies of the CSF inflammatory response in asymptomatic neurosyphilis. FUNDING: This work was funded by the National Institutes of Health, grants K23MH118999 (S.F.F.) and R01NS082120 (C.M.M.).


Assuntos
Neurossífilis , Sífilis , Estados Unidos , Humanos , Sífilis/líquido cefalorraquidiano , Doenças Neuroinflamatórias , Neurossífilis/diagnóstico , Neurossífilis/líquido cefalorraquidiano , Sorodiagnóstico da Sífilis/métodos , Reaginas
18.
Acta Neuropsychiatr ; : 1-6, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38533577

RESUMO

OBJECTIVE: Niemann-Pick Type C (NPC) is a genetic neurodegenerative lysosomal storage disorder commonly associated with psychiatric symptoms and delays to accurate diagnosis and treatment. This study investigated biomarker levels and diagnostic utility of plasma neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in NPC compared to healthy controls. METHODS: Patients with NPC were recruited from a specialist assessment and management service. Data was available from an age and sex-matched healthy control group. NfL and GFAP were measured on Quanterix Simoa HD-X analysers and groups compared using generalised linear models. NfL levels were compared to, and percentiles derived from, recently developed NfL reference ranges. RESULTS: Plasma NfL was significantly elevated in 11 patients with NPC compared to 25 controls (mean 17.1 vs. 7.4 pg/ml, p < 0.001), and reference ranges (all >98th percentile). NfL distinguished NPC from controls with high accuracy. GFAP levels were not elevated in NPC (66.6 vs. 75.1 pg/ml). DISCUSSION: The study adds important evidence on the potential diagnostic utility of plasma NfL in NPC, extends the literature of NfL as a diagnostic tool to differentiate neurodegenerative from primary psychiatric disorders, and adds support to the pathology in NPC primarily involving neuronal, particularly axonal, degeneration.

19.
Nat Rev Neurol ; 20(4): 232-244, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38429551

RESUMO

Disease staging, whereby the spatial extent and load of brain pathology are used to estimate the severity of Alzheimer disease (AD), is pivotal to the gold-standard neuropathological diagnosis of AD. Current in vivo diagnostic frameworks for AD are based on abnormal concentrations of amyloid-ß and tau in the cerebrospinal fluid or on PET scans, and breakthroughs in molecular imaging have opened up the possibility of in vivo staging of AD. Focusing on the key principles of disease staging shared across several areas of medicine, this Review highlights the potential for in vivo staging of AD to transform our understanding of preclinical AD, refine enrolment criteria for trials of disease-modifying therapies and aid clinical decision-making in the era of anti-amyloid therapeutics. We provide a state-of-the-art review of recent biomarker-based AD staging systems and highlight their contributions to the understanding of the natural history of AD. Furthermore, we outline hypothetical frameworks to stage AD severity using more accessible fluid biomarkers. In addition, by applying amyloid PET-based staging to recently published anti-amyloid therapeutic trials, we highlight how biomarker-based disease staging frameworks could illustrate the numerous pathological changes that have already taken place in individuals with mildly symptomatic AD. Finally, we discuss challenges related to the validation and standardization of disease staging and provide a forward-looking perspective on potential clinical applications.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons , Biomarcadores/líquido cefalorraquidiano
20.
EBioMedicine ; 102: 105046, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471397

RESUMO

BACKGROUND: Blood-based biomarkers of Alzheimer's disease (AD) have become increasingly important as scalable tools for diagnosis and determining clinical trial eligibility. P-tau217 is the most promising due to its excellent sensitivity and specificity for AD-related pathological changes. METHODS: We compared the performance of two commercially available plasma p-tau217 assays (ALZpath p-tau217 and Janssen p-tau217+) in 294 individuals cross-sectionally. Correlations with amyloid PET and tau PET were assessed, and Receiver Operating Characteristic (ROC) analyses evaluated both p-tau217 assays for identifying AD pathology. FINDINGS: Both plasma p-tau217 assays were strongly associated with amyloid and tau PET. Furthermore, both plasma p-tau217 assays identified individuals with AD vs other neurodegenerative diseases (ALZpath AUC = 0.95; Janssen AUC = 0.96). Additionally, plasma p-tau217 concentrations rose with AD severity and their annual changes correlated with tau PET annual change. INTERPRETATION: Both p-tau217 assays had excellent diagnostic performance for AD. Our study supports the future clinical use of commercially-available assays for p-tau217. FUNDING: This research is supported by the Weston Brain Institute, Canadian Institutes of Health Research (CIHR), Canadian Consortium on Neurodegeneration in Aging, the Alzheimer's Association, Brain Canada Foundation, the Fonds de Recherche du Québec - Santé and the Colin J. Adair Charitable Foundation.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Canadá , Plasma , Envelhecimento , Bioensaio , Proteínas tau , Biomarcadores , Peptídeos beta-Amiloides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...